激光表面强化残余应力研究激光表面强化的重要特点之一就是能够在工件表面形成残余压应力,对具有抗疲劳性能要求的航空结构件起到强化的作用。因此残余应力是激光表面强化研究的一个重要方面。研究表明,当板材底部无约束支撑时,板材凹凸面的表面残余应力都是压应力;当采用凸模冲击成形时,表面残余应力变化趋势不明确,有时为压应力,有时为拉应力。对激光表面强化的3A21防锈铝板的残余应力分布特性进行了研究。用X射线应力测定仪进行了3个方向残余应力的测量,建立了主应力计算公式,分析其形成机制与分布特性。试验结果表明:在脉冲能量42J、脉冲宽度23ns、脉冲功率1.2×109W作用下,板料正反两面产生的残余应力小于-100MPa,且均为压应力,除变形区域顶点主应力方向为0°外,其他点的主应力方向约为-30°,且正方形板料对角线方向应力大于穿过中心边长方向的应力。不同脉冲功率密度和涂层对钛合金残余应力的影响,表明涂层材料与激光耦合性能越好,激光功率密度越高,钛合金残余应力作用效果越好,在冲击试件表面能形成1mm厚的残余应力硬化层,其表面残余压应力**大能达到-301MPa。
薄板成形后的凹面分布有较大的残余压应力,而凸面边缘存在较小的残余拉应力,残余应力随激光能量的增加而增加,但存在一个**大值。凹模孔径也存在一个阈值,当小于该阈值时,残余应力随凹模孔径的增大而增大,当大于该阈值时,残余应力随凹模孔径的增大而减小。
激光表面强化过程是涉及激光与材料的相互作用、冲击波传播及其对材料的加载机制、动态塑性成形理论以及冲压成形工艺等众多学科的复杂过程。受到激光器等硬件条件的制约,目前国内能开展激光表面强化试验的研究机构不多,试验费用昂贵。若对众多影响因素都进行试验研究,不仅费用高、工作量大,而且各因素之间的相互影响关系也很难在试验中得以体现。这些原因大大限制了激光表面强化技术的研究。随着计算机和有限元技术的飞速发展,有限元数值模拟已成为一种重要的研究手段,开展激光表面强化的有限元模拟研究,可以为加工过程中各种参数的合理优化、板料变形过程的有效控制、分析和实现大面积金属板料的激光表面强化提供依据,必将对激光表面强化技术应用于生产实践起到极大的推动作用。
在激光单次冲击加载下,激光脉冲能量与板料的变形量之间存在直接关系,随着激光能量的增加,板料变形量呈现非线性增大趋势。数值模型能有效地模拟激光冲击板料的变形过程,为激实现大面积金属板料的柔性激光冲压成形提供依据。结果表明:随着激光能量的增加,板料的变形量增大;板料初始约束孔径越大,板料越容易变形;板料几何尺寸和厚度越大,板料越难变形。随着激光能量的增加,板料的变形量增大;板料几何尺寸和厚度越大,板料越难变形;冲击次序不同,板的变形量也不同,板的变形以沿板的长度方向且对称冲击为**大。通过数值模拟可优化激光冲击的相关参数,预测板料变形。随着光斑间距的减小,受冲区域更加平整。
(1)在激光表面强化工艺研究方面,目前更多的是针对单点单次激光冲击变形行为的研究,而实际应用中更多的则是要进行多点多次激光冲击,因此开展多点多次激光表面强化工艺及其优化的研究,对激光表面强化技术的应用具有更高的参考价值。此外,影响激光表面强化质量的工艺参数较多,试验设备少且费用高昂,因此,采用正交试验等方法来确定影响激光表面强化质量的主控因素,获得优化工艺参数是一个非常实用且可行的研究思路。
(2)激光表面强化残余应力研究当前的研究主要集中在残余应力的分布特性的研究上,涉及的影响因素较少,因此应开展综合考虑各种因素的残余应力分布特性以及基于残余应力分布的工艺参数优化研究。
(3)在激光表面强化的有限元模拟方面,当前的思路是在将激光冲击过程简化为时变冲击压力作用下板料变形过程的分析,对激光成形过程的模拟不够准确,因此应开展激光引起离子体爆炸过程的有限元模拟分析,来获得更精确的冲击波压力。此外,激光表面强化是一个高应变率变形过程,当前的材料模型获取方法还无法达到如此高的变形速率,而且变形过程的绝热温升也没有涉及,因此高应变率材料本构建模及激光表面强化过程热-力耦合有限元模拟的研究都将成为激光表面强化有限元模拟方面的重要研究方向。
激光表面强化是利用激光诱导高幅冲击波的力效应使板材产生塑性变形的快速、高效、精确的成形新技术,具有加工柔性高、精确可控、无小曲率成形的回弹问题、成形后材料性能好和无污染等特点,是一种无模、柔性成形新工艺,它可以充分发挥激光高能量的优点,是激光在板材成形领域的新应用,具有广阔的应用前景和巨大的开发潜力。开展激光表面强化技术的研究,对于促进我国航空航天领域关键部件成形制造技术的发展具有重要的意义。